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ABSTRACT

The semiempirical model of condensed-phase equations of state for polymer ma-

terials in a wide range of thermodynamic parameters is proposed. Equations of state for

polyethylene, polystyrene, and polymethylmethacrylate are constructed on the base of

model developed, and the critical analysis of calculated results with the complex of avail-

able at high temperatures and pressures experimental data is made.
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1. INTRODUCTION

The analysis of the thermodynamic properties of various substances over a wide

region of phase diagram is of fundamental as well as practial interest. Structural material

thermodynaics under conditions of high temperatures and pressures are a necessary part

for carrying out the computer simulation of nonsteady hydrodynamic processes, gener-

ated by the influence of intense pulse energy fluxes on condensed media [1].

The base of difficulty confronting a systematic theoretical calculations of the

equation of state (EOS) under high energy processes conditions is the need to incorpo-

rate correctly the structurally complicated interparticle interaction. The introduction of

model simplifications is possible in a limited range of application [2], this possibility being

considerably decrease for chemical compounds. Therefore for common description of

matter properties in a wide range of thermodynamic parameters on phase diagram it is

traditionally to apply semiempirical models in which different experimental data are used

to determine the numerical coefficients of general functional dependences found from

theoretical considerations.

In this report we describe the semiempirical model of wide-range EOS for poly-

mer materials in the condensed phase. It takes into account depositions of the elastic lat-

tice component, acoustic and optical modes of thermal vibrations of nuclei with anhar-

monic effects at high temperatures, thermally exited electrons. EOS for polyethylene

(PE), polystyrene (PS), and polymethylmethacrylate (PMMA) are constructed on the

base of model developed, and phase diagrams of investigated plastics are constructed

with calculations of shock Hugoniots, isotherms, and isentropes. The critical analysis of

calculated results with the complex of available at high energy densities experimental

data is made.

2. EOS MODEL

A thermodynamically complete EOS for condensed phase of substance is defined

by the free energy F preassigned as a sum of three components
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describing the elastic part of interaction at T = 0 K ( Fc) and the thermal contribution by

atoms ( Fa ) and electrons ( Fe ).

The volume dependence of elastic component of energy is expressed as follows
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where σc cV V= 0 , V c0  is the specific volume at P= 0  and T = 0 K, B c0  is the bulk

modulus B VdP dVc c= −  ( P dF dVc c= − ) at σc =1, Ecoh  is the cohesive energy. The

normalization condition ( )E Vc c0 0=  gives E B V mncoh c c= 0 0 . The derivative of the

elastic bulk modulus with respect to pressure ′ =B dB dPc c c  at σc =1 determines the re-

lation between parameters m and n in the form n B mc= ′ − −0 2 . The values of parameters

V c0 , B c0  and ′B c0  for each substances are chosen by iterations so that the tabulated

value of the specific volume V V= 0 , and the isentropic bulk modulus

( )B V P V BS S S= − ∂ ∂ = 0

and its derivative with respect to pressure

( )′ = ∂ ∂ = ′B B P BS S S S0

determined from the results of dynamic measurements would be satisfied under normal

conditions P= 0.1 MPa and T= 298 K. The undetermined parameter m in equation for

elastic compression energy Fc  can be found from the conditions of the best description

of the experimental data on the dynamic compressibility of plastics in forward and re-

flected shock waves.

The thermal component of free energy is defined by excitation of acoustic and

optical modes of thermal vibrations of atoms:
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where R is the gas constant, ν is the number of atoms in the repeating cell of polymer

chain,
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is Debye function [3], σ = V V0 , θacst and θ αopt  are the characteristic temperatures of

acoustic and optical modes of phonon spectrum, Ta  is empirical parameter, which en-

ables best to describe data of dynamic experiments at high pressure. The volume depend-

ences of θacst and θ αopt  are determined by the interpolational formula
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where γ 0  is the value of Gruneisen gamma under normal conditions, σm  and σn  are

free parameters, chosen from the requirement of the optimal description of experimental

data on measurements of dynamic compressibility of porous specimens of researched

substances. The values of coefficients θ0acst and θ α0opt  are defined from tabular values

for specific heat capacity ( )C T S TP P= ∂ ∂  at normal pressure and various temperature

[4]. For model simplification the spectrum of optical vibrations is represented by three

degenerate frequencies with corresponding degeneration factors α1 , α2 , and α3 , its

sum being ( )α α α ν1 2 3 3 1+ + = − . The quality of the proposed form of contribution of

thermal vibrations of atoms to the thermodynamic potential is examplified by the EOS

calculations for PE, PS, and PMMA as compared with the experimental data [4] for

specific heat capacities in Fig. 1.



Fig. 1. Specific heat capacity of PE, PS, and PMMA at normal pressure, 1 — this EOS
model, 2 — the Debye model [3]. Experiment [4].



The electron component of free energy is included in the form:
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where ( )A k m k he= 4 2 2 3 2π , k and h are the Boltzman and Plank constants, me  is

electron mass,

( ) ( )( )T V ks s= −∆0 1 2exp σ σ ,

∆0  is the energy gap between the valence band and the conduction band at normal

condition, parameter σs defines the rate at which the gap is narrowed,

( ) ( ) ( )γ γe e gT T T= + − −1 10 exp

is analogues of the electronic Gruneisen coefficient. Such form of Fe  in constructing of

EOS for dielectrics takes into account the thermal exitation of electrons into the conduc-

tion band which occurs when a substance is heated [5, 6]. Also chosen Fe —T-depend-

ence describes the transition to plasma with average ion charge Ze  at temperature limit

T→ ∞ .

3. THERMODYNAMIC PROPERTIES OF PE, PS, AND PMMA

The resulting EOS for PE, PS, and PMMA adequately describe the experimental

data on the shock compressibility of solid and porous (PS) specimen of these plastics [7-

12] over the entire range of kinematic ( Us , Up  — shock-wave and particle velocities)

and dynamic characteristic realized, as can be seen from Fig. 2-4. A comparison of the

calculated temperature values for the shocked PMMA with the results of measurements

at the ultrahigh pressure range [11, 13] presented in Fig. 5 shows their good correlation

too.



Fig. 2. Shock Hugoniots of high and low density PE (HD and LD). Experiment [7].

Fig. 3. Shock Hugoniots of PS, m = ρ ρ0 00  — initial porosity. Experiment: 1 — [7], 2

— [8].



Fig. 4. Diagram of states for the condensed phase of PMMA, H — principal Hugoniot,
S — isentrope, Pc  — elastic compression curve at T= 0 K, T — isotherms, B —

condensed phase—vapour equilibrium curve with critical point (CP), Sp — spi-
nodal. Experiment: 1 — [7], 2 — [9], 3 — [10], 4 — [11], 5 — [12].

Fig. 5. Temperature vs pressure for shocked PMMA, 1 and 2 — this EOS model with
and without electron component, 3 — with electron component by model [6].
Experiment: 1 — [11], 2 — [13].



Analysis of the data [7, 8, 14] for PS indicates that there is a physicochemical

conversion of the substance at the shock front. On the principal Hugoniot this conversion

begins at pressures P≈ 20 GPa. It involves a significant change in the density (by ~20%)

and compressibility of the medium. This result is usually attributed to destruction of the

polymer caused by the rupture of chemical bonds, resulting in the formation of a slightly

compressible mixture of a diamondlike phase of carbon and various low-molecular

weight components [15]. In this paper we construct EOS for PS before transformation.

The model evaluation for temperature of conversion beginning on the principal Hugoniot

is T≈ 1500 K.

The diagram of states for the condensed phase of PMMA plotted in Fig. 4 con-

tains the dynamic experimental data; also plotted are calculated principal Hugoniot,

curve of isentropic expansion, isotherms, condensed phase—vapour equilibrium curve

and spinodal. Note that the experimental release isentrope [10] begins with state of

highly heated shocked condensed matter and continues up to rarefied-gas states. The is-

entropic expansion technique [10] has enabled to record the point of boiling of sub-

stanse. In this case, kink in the calculated curve at the onset of evaporation corresponds

to the experimentally observed additional increase of the expansion rate within the two-

phase liquid—vapour region. The obtained value of equilibrium evaporation temperature

at normal pressure Tv0 = 473 K practically coincides with the tabular one for PMMA de-

polymerisation (methylmethacrylate is gas at such temperature). Calculation of tempera-

ture on condensed-phase spinodal ( )∂ ∂ =P V T 0  at normal pressure gives Tsp0 = 790 K,

that is close to experimental value of limiting temperature of attainable overheating

Tl = 788 K [6]. The parameters of the critical point for PMMA were evaluated on the

base of proposed EOS model, these are Pcr = 0.37 GPa, Tcr = 953 K, Vcr = 1.64 cc/g,

Scr = 6.09 J/gK.



4. CONCLUSION

Calculations by presented EOS model demonstrate that thermodynamic charac-

teristics of condensed phase of plastics are descrepted by analytical formulas which are

the same both at the normal conditions and at the highest temperatures and pressures at-

tained in experiments. The resulting wide-range EOS for PE, PS, and PMMA describe

consistently all of the available static and dynamic experimental data, and they can be

employed effectively in numerical modelling of nonsteady gasdynamic processes at high

energy density.
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